
Business Logic in the
Presentation Layer

Design Patterns on the Implementation of
Business Logic on the Client-Side

Tim Wellhausen

kontakt@tim-wellhausen.de
http://www.tim-wellhausen.de

Jan 05, 2007

Abstract: As a general rule of thumb, business logic in a multi-layered in-
formation system should be implemented in a dedicated domain layer and be
separated from the presentation layer. Although this rule has demonstrated its
validity, it restricts the options for designing information systems. At times,
there may be good reasons to deploy some types of business logic locally in
the presentation layer.

This paper presents a collection of design patterns that address the forces of
implementing business logic in the presentation layer in the context of an ob-
ject-oriented business domain layer.

Introduction
In an information system, business logic represents the rules and activities of a business do-
main, whereas a corresponding business domain model defines the associations and proper-
ties of business data1. Business logic manipulates the data and, at the same time, ensures
their consistency and validity.

In principle, business logic should be implemented in a business domain layer to separate
the business logic from the user interface and the technical infrastructure. The user inter-
face should only present business data and let users start the execution of business logic.

There are practical reasons, however, not to isolate business logic completely from the pre-
sentation layer of client applications. To make a client application convenient to use, some
information about the business domain has to be incorporated into the presentation layer.

These are some examples:

● Responsiveness. User input must be validated before its processing, for example a
birth date or a credit card number. To make an application more responsive, some
validations may need to be performed locally.

● Performance. Some periodically performed computations may require the evaluation
of large amounts of data, for example the analysis of stock quotations. A stateless
server component would need to fetch the entire data required for the computation
upon each invocation. A rich-client application may locally store and update the
available data and perform the same calculations without additional costs.

● Presentation. Business data may need to be prepared for presentation. This includes
the textual representation of business entities or the graphical representation of calcu-
lations, for example the presentation of a schedule. How business data is presented
may vary between client applications and typically is not an essential part of the busi-
ness logic.

Although multi-tier information systems can be decomposed in many different ways, the
implementation of a Layered Architecture ([Evans2004]) has become wide-spread. Such
an architecture mandates a separation of concerns that involves at least separating the
presentation layer from the business domain and infrastructure layers.

Typically, business domain and infrastructure layers are deployed in an application server
whereas the presentation layer is part of a web or rich-client application. A common archi-
tecture for a web application is shown in Fig. 1.

1 In the literature, the terms business logic and domain logic are often used synonymously. In this
paper, only the term business logic is used.

- 2 -

Fig. 1: Architecture of a Web Application

The web client interacts with the presentation layer that in turn calls the business domain
layer for all business-oriented tasks. The loading and saving of business data is delegated to
a persistence layer that communicates with the database server.

In contrast, a common architecture for a rich-client application is shown in Fig. 2. The
presentation layer is now locally deployed on the machine of a user. The communication
between the presentation layer and the domain layer needs to cross the system boundaries,
which involves network transfer.

In both cases, business data should only be modified by the business domain layer to en-
sure the consistency and security of the data. Consistency checks should be performed by a
central component to detect, for example, simultaneous changes to the same business ob-
ject. Security must be enforced on the server-side because a server application must not rely
on the correctness of a client application. Constraints on the valid values of business data
should also be checked on the client-side, however, for example when a user has just
entered data, to increase the user-friendliness of a system.

The specific structure of a business domain layer varies tremendously. Typically, the busi-
ness domain layer consists of some kind of services (in [Fowler2002] they are called
Transaction Scripts) and a Domain Model (also see [Fowler2002]).

These are some typical variations:

A simple domain model may contain business objects with primitive values only. In this
case, the columns of a database table directly correspond to the fields of a business object.
Relations between database tables are not mapped to associations between business objects.

A more sophisticated domain model may employ object associations and polymorphism.
In this case, the information system may support loading and saving graphs of connected
business objects and support the usage of polymorphism to create business object class
hierarchies. The presentation layer may then retrieve a fully expanded graph of business
objects at once.

Whether business objects actually contain any business logic or not may also vary. If busi-
ness objects do not contain business logic, server-side business logic is often implemented
procedural, i.e. in services that load, modify, and store business objects.

Whether the presentation layer uses the same business objects as are used on the server-side
may vary as well. If business objects are not sent to the presentation layer, typically, Data
Transfer Objects ([Marinescu2002]) are exchanged between the server-side and the cli-
ent-side.

* * *

- 3 -

Fig. 2: Architecture of a Rich-Client Application

Within this context, the following problem often needs to be addressed:

How do you implement business logic that is primarily needed by the presentation lay-
er?

Although business logic should reside in a business domain layer and be isolated from oth-
er layers of a system, some types of business logic may be needed locally by client applica-
tions. The following forces constrain the implementation of such business logic:

Logic that is needed on the client-side often is easy to program. It is therefore frequently
and redundantly implemented in many different places. In particular, the business logic
source code in a client application tends to be interwoven with the user interface source
code for event handling. If the GUI changes, the business logic may require adjusting as
well. If the business logic is modified, it may become complicated to locate all spots in the
GUI that need be addressed.

If, on the other hand, business logic is strictly kept on the server-side, other problems may
arise. Some logic may be relevant only to the presentation layer. If such a logic requires fre-
quent modifications during the development of the client application, the process of devel-
opment for client and server components becomes closely coupled.

Furthermore, if a client application must call some business logic frequently, fine-grained
remote method calls for many user operations would probably cause unacceptable delays
in the user interaction and result in increased network overhead.

Deploying business logic in a presentation layer may evoke security issues if modifications
to business data are not checked on the server-side as well. Malicious users may modify a
client application to let them ignore security checks.

In a multi-user environment, the presentation layer may not be able to enforce the integrity
of business data, in particular in case of rich-client applications. Only a centralized server
component is able to handle cases of synchronous user actions.

* * *

The patterns that are shown in Fig. 3 resolve these forces. Note that the patterns do not
complement each other; they are rather alternatives for solving a common problem.

You may implement client-side business logic in Enhanced Business Objects as it is the
object-oriented way of coupling data and associated behavior.

If the presentation layer only receives pure data transfer objects and a simple solution is es-
sential, you may implement business logic as Client-Side Procedural Logic.

- 4 -

Fig. 3: The Patterns

If, likewise on the client-side, object-oriented concepts add significant value over procedur-
al code despite exchanging pure data transfer objects, you should consider the implementa-
tion of business logic in Client-Side Wrapper Objects.

Business logic may not be intended to be implemented statically in the presentation layer
and, at the same time, a decision regarding where to deploy the logic may be desired at a
later time. Then you should consider Shared Declarative Logic, which may be de-
ployed on both client-side and server-side.

- 5 -

Running Example
A running example illustrates the patterns. Imagine a music player that is locally deployed
as a rich-client application and connected to a server from which it fetches play lists and re-
trieves information about albums. The server-side business domain layer for this example
application is depicted in Fig. 4. Note that although the running example is illustrated in
Java, the patterns are not restricted to Java.

A MusicService provides access to the business data by letting a client application retrieve
business objects by their keys. The client application may retrieve instances of Album and
instances of Playlist. Both Album and Playlist have a common super class,
SongCollection, whose responsibility basically is to hold references to songs.

A Song object has a title and a length in seconds. If a song is part of an album, the Album
instance keeps references to instances of Track that additionally keep the track number. An
Album has a unique identifier and a title, a Playlist a name.

Moreover, suppose the following requirements apply to the client application:

● When displayed, the name of an album and the title of a play list should always be
extended by the number of songs and their overall length.

● The name of a song should always be shown in conjunction with the length of the
song.

● The list of tracks that an album refers to must be sorted according to the track enu-
meration.

Each requirement involves some data processing that is based on the business objects trans-
mitted to the client application.

- 6 -

Fig. 4: Server-side domain model of a music player

Enhanced Business Objects
Implement client-side business logic in the business objects themselves and send these ob-
jects to the presentation layer.

The information system to build is a web application or the business domain model is
straightforward and there are few complex requirements on the presentation layer. Addi-
tionally, the individual developers are mostly working on both the presentation and do-
main layers at once.

* * *

How do you implement business logic for the presentation layer if low overhead is im-
portant and redundancies should be avoided?

A system that can be built by a small team of developers may need a straightforward solu-
tion to implement business logic in the presentation layer. In particular, the extra effort to
create a suitable solution must be low.

The object-oriented paradigm has proven to be very powerful. One of its core insights is to
Keep Related Data and Behavior in One Place ([Riel1996]). If data and behavior are
separated, business logic may become splattered over many places, which makes it difficult
to keep track of it.

Therefore:

Keep business logic in business objects. Enrich each business object with the business lo-
gic needed by the presentation layer.

Let the business domain layer return business objects to the presentation layer when re-
quested so that the presentation layer can use them to update the appropriate views. There-
fore, add the functionality requested by the presentation layer to the business objects. (see
Fig. 5).

Give each business object a clear and narrow responsibility. Each operation should be im-
plemented in that respective business object that holds or may gather the relevant data. Use
polymorphism to implement behavior that differs in sub classes.

To resolve the requirements of the example application, the classes of the domain model are
extended by client-side business logic, as shown in Fig. 6. Note that all methods that have
been added are marked in blue color.

The class SongCollection got two operations: getLength and getFormattedName. The
method getFormattedName has been made abstract because the formatted names of play
lists and albums differ. The accessor method getSongs was overridden in Album to ensure
that the list of tracks is always sorted.

- 7 -

Fig. 5: Enhanced Business Objects

* * *

Implementing business logic in business objects keeps the logic and the data together, even
on the client-side. If this pattern is applied strictly, business logic is kept out of GUI code
and therefore easier to locate and maintain.

There is almost no overhead involved in fulfilling the requirements of the presentation lay-
er. Adding new methods to existing domain classes is easy and cheap.

On the other hand, implementing client-side business logic in business objects that are
managed by a server component violates the separation of concerns: a client application
may interfere with the responsibilities of the server component, possibly invoking security
and integrity issues. In particular, business objects that are transferred to a client may
provide high-level operations that expose server-side business logic.

There is a risk of coupling the server component with client-side classes from a GUI lib-
rary if, for example, a list of rich business objects implements a GUI list model interface.
However, server components should not know any details of the presentation layer.

A server component may be called from several client applications, each of which may re-
quire different kinds of business logic. Sharing the same business objects may multiply de-
velopment and deployment conflicts.

If a model-based development approach is applied, the source code of business objects is
often generated from a high-level abstraction of the business domain model (see, for ex-
ample, [Völter+2004]). Depending on the product used for code generation, it may be diffi-
cult to merge hand-written business logic with generated source code.

The more logic is added to business objects, the bigger business objects tend to become.
Often, a few dominant classes contain most of the code. These classes sometimes deterior-
ate into God classes (see [Riel1996]).

- 8 -

Fig. 6: Example resolved using Enhanced Business Objects

Client-Side Procedural Logic
Implement business logic on the client-side in a procedural style.

The presentation layer and the domain layer either communicate by the exchange of pure
data transfer objects or by the exchange of business objects that must not be enhanced for
the presentation layer. Still, there are few complex requirements on the presentation layer.

* * *

How do you implement business logic in the presentation layer if low overhead is im-
portant and redundancies should be reduced?

If the presentation layer receives objects that do not contain the logic required for the
presentation layer, this logic must be implemented locally in the presentation layer itself. If
there is no policy how and where to implement client-side business logic, all kinds of code
redundancies may result.

Sometimes, a simple solution is the best solution because budget or time restrictions pre-
vent implementing a clean and elegant solution to handle client-side business logic.

Therefore:

Implement business logic in a procedural style and locate its implementation in a cent-
ral place of the presentation layer.

It is important to organize the client-side procedural logic in such a way that it is not inter-
woven with the controls or views of the presentation layer. The individual procedures
should receive the objects retrieved from the domain layer as parameters and return their
results in the form needed by the presentation layer (see Fig. 7).

You could, for example, implement procedural logic in helper classes with static methods.
In this case, you could create a helper class for each business object to encapsulate business
logic that operates on the business object. You may omit helper classes for those business
objects for which no client-side business logic exists.

If the business domain model incorporates polymorphism, you may create a helper class
for the base class, for some classes of the hierarchy, or for each class. You need to trade off
between a proliferation of helper classes and the cost of introducing conditional statements.

To make the relationship between business objects and helper classes as explicit as possible,
the helper classes should mirror the structure of the business domain model, for example
by applying a similar package naming schema.

- 9 -

Fig. 7: Client-Side Procedural Logic

Static helper methods should be stateless by default. Only if the results of some computa-
tions are frequently requested and the data these computations rely on seldom change, you
may need to implement a local, static caching mechanism.

Fig. 8 presents a possible implementation for the running example using procedural logic in
form of static helper methods.

The business logic for SongCollection and its sub classes Playlist and Album is encap-
sulated in SongCollectionLogic. The implementation of getLength operates on a given
SongCollection whereas in getFormattedName, a conditional distinction between
Playlist and Album is necessary. There is no need for a class TrackLogic because there is
no business logic particularly for Track instances.

* * *

By applying a procedural approach, changes to client-side helper classes only affect the re-
spective client application. Business logic for the client-side is easily added and modified.

The development process of business logic on the server-side is not coupled to the develop-
ment process of business logic on the client-side. If several distinct client applications com-
municate with the same server component, each one may implement its own set of helper
methods. The involved system are therefore only loosely coupled.

As a downside, business data is separated from its behavior. Procedural logic is often seen
as a symptom of a badly designed object-oriented system. The advantages of object-ori-
ented programming are lost, business logic code may get duplicated, and the reusability of
business logic may be reduced.

- 10 -

Fig. 8: Example resolved using Client-Side Procedural Logic

Client-Side Wrapper Objects
For each business object, create a wrapper object on the client-side that contains the busi-
ness logic.

The presentation layer and the domain layer communicate only by the exchange of pure
data transfer objects. The business domain model is complex, and so are the requirements
for the presentation layer.

* * *

How do you implement business logic in the presentation layer if it is important to
keep the logic in one place and to take advantage of object-oriented programming?

Business logic can't be implemented in Enhanced Business Objects because the require-
ments on the client-side differ from the requirements on the server-side and the develop-
ment process of the presentation layer and the domain layer would be bound too closely.

Implementing business logic in Client-Side Procedureal Logic may cause business lo-
gic to deteriorate into conditional code that is difficult to understand and maintain. Object-
oriented concepts may help to improve the structure of the code.

Therefore:

On the client-side, create a wrapper object for each data transfer object and add the
business logic that is required by the presentation layer to the wrapper objects.

Each wrapper object receives a reference to the wrapped data transfer object upon its cre-
ation. The business logic in a wrapper object may then act upon the business data in its
wrapped object and provide access to the wrapped business data. For each association of a
wrapped business object, the wrapper object needs to maintain a new association to anoth-
er wrapper object.

Although the presentation layer receives data transfer objects from the domain layer, the
controls and views of the presentation layer are developed only against the wrapper objects
(see Fig. 9).

Whenever the client application retrieves business objects from the server component, the
system must create appropriate wrappers and return them instead of the actual business ob-
jects. Consider using the Business Delegate pattern ([Alur+2003]) to encapsulate this
process.

To apply this pattern to the example application, a wrapper must be created for each busi-
ness object, as shown in Fig. 10.2 The upper half of the class diagram shows the business

2 There should actually be data transfer objects in the diagram; these are left for simplification.

- 11 -

Fig. 9: Client-Side Wrapper Objects

objects from Fig. 4 (Playlist has been left out in this example). The lower half contains
the corresponding wrappers: one for each business object (marked in blue color).

The wrapper objects form a class hierarchy that corresponds to the hierarchy of the busi-
ness objects. At runtime, each wrapper refers to a wrapped object, and for each association
in the business domain model, there is an association between wrappers.

In the example, every SongWrapper refers to a Song and every SongCollectionWrapper
refers to both a SongCollection and a list of SongWrapper objects. Besides these refer-
ences, SongCollectionWrapper contains business logic that applies to SongCollection
objects and SongWrapper business logic that applies to Song instances.

For the sub classes of SongCollection and Song, Album and Track, respectively, there are
additional wrappers: AlbumWrapper and TrackWrapper. Explicit references to their
wrapped objects are not needed as they inherit the references from their base classes.
However, both classes provide type-safe getter methods to the wrapped objects
(getAlbum(), getTrack()).

The creation of wrapper objects should be delegated to a Factory ([Evans2004]). Both the
business delegate objects that retrieve business objects from the server component and the
wrappers themselves should call the wrapper factory for object creation. In the example,
the business delegate MusicDelegate calls the WrapperFactory to let it create an instance
of AlbumWrapper for every Album object received:

- 12 -

Fig. 10: Example resolved using Client-Side Wrapper Objects

public class MusicDelegate {
 public AlbumWrapper findAlbum(Object id) {
 Album album = getMusicService().findAlbum(id);
 return WrapperFactory.createAlbumWrapper(album);
 }
}

The implementation of AlbumWrapper.getTrackWrappers() first also delegates to the
factory and then fulfills the requirement to return a sorted list of tracks:

public class AlbumWrapper {
 public List<TrackWrapper> getTrackWrappers() {
 List<TrackWrapper> trackWrappers =
 WrapperFactory.createTrackWrappers(getTracks());
 Collections.sort(trackWrappers, getTrackComparator());
 return trackWrappers;
 }
}

Using a factory makes it possible to switch the creation strategy of wrapper objects. If it is
important to limit the maximum memory consumption, the factory may create new wrap-
per objects upon each request so that these objects may be disposed by the garbage collect-
or soon after the call. If it is important, on the other hand, to increase the operational speed,
the factory may keep the created wrapper objects in a cache.

To increase the convenience for client programmers, getter methods may be added to the
wrappers to make the properties of the business objects more easily retrievable, as shown
in the following example:

public class AlbumWrapper {
 public String getTitle() {
 return getAlbum().getTitle();
 }
}

Furthermore, the naming conventions may be changed: Instead of appending -Wrapper to
each wrapper object, an appendix like -TO (which stands for Transfer Object) may be ap-
pended to each business object and wrappers be left without appendices. In that case,
Album would be the client-side wrapper for the transfer object AlbumTO.

* * *

Client-side wrapper objects strike a balance between implementing business logic in busi-
ness objects and using static helper methods. Creating a class hierarchy of wrapper objects
makes it possible to employ object-oriented concepts such as polymorphism while keeping
this code local to the client application.

As a downside of this approach, the design of wrapper objects is more complex, in particu-
lar regarding associations. Creating dedicated wrapper objects leads to a proliferation of
both classes at compile-time and objects at runtime. Wrapper objects are closely coupled to
data transfer objects. If the implementation of a data transfer object changes, the wrapper
object often also needs to be changed at once.

Typically, the code of data transfer objects is generated. Because the structure of wrapper
objects follows static rules, the code for wrapper objects may be generated as well. In that
case, a sophisticated code generation tool is required to mix both generated and hand-writ-
ten code.

- 13 -

Shared Declarative Logic
Deploy the same business logic on the client-side as on the server-side.

Some kind of business logic is required both on the client-side and on the server-side. It
may be important to decide late where to deploy this logic. It is possible to generalize the
business logic.

* * *

How do you implement business logic that should be easily accessible and executable in
different layers of a system?

It may not be desirable to implement any kind of business logic locally in client applica-
tions. However, some business logic that exists on the server-side may be useful on the cli-
ent-side as well, for example for the validation of business data.

If business logic is left on the server-side only, performance problems are likely to appear;
if existing business logic is re-implemented on the client-side, code redundancies may arise.

Therefore:

Apply an existing domain specific language or create a new domain specific language,
implement the business logic declaratively, and make it available in any layer.

Business logic that is developed declaratively may easily be deployed in any layer of a sys-
tem. It may be a runtime decision where to execute the logic. The key to this pattern is the
ability to run a container or library that executes the business logic both on the client-side
and server-side (see Fig. 11).

Typically, declarative business logic is written as text, for example in form of an XML dia-
lect. The Jakarta Commons Validator project ([Validator]) supports the validation of busi-
ness data in such a fashion.

To apply business data validation to the example application, suppose, a Song instance
must always have a title that must not exceed 40 characters. The following XML code de-
scribes this rule, using Apache Validator:

<formset>
 <form name="SongBean">
 <field property="title" depends="required,maxlength">
 <arg0 key="Song.title"/>
 <arg1 name="maxlength" key="${var:maxlength}"/>
 <var>
 <var-name>maxlength</var-name>
 <var-value>40</var-value>

- 14 -

Fig. 11: Shared Declarative Logic

 </var>
 </field>
 </form>
</formset>

This kind of business logic may be deployed both in a web server to validate user input
from a web page and in a server component that checks business data before it is stored in a
database.

* * *

If the same business logic is needed on both the client-side and server-side, source code re-
dundancies are avoided. Deploying the same source code in several environments ensures
that the business logic behaves the same in all cases.

The ability to decide late where to deploy the business logic leaves room for late perform-
ance optimizations without the need to change the system architecture.

The downside of this approach is the potentially huge upfront effort to create a domain
language. There should be more reasons for such an intention than the desire to have a neat
mechanism to execute business logic in the presentation layer.

Furthermore, it may be difficult to find an appropriate library or framework to be used on
both the client-side and the server-side that satisfies the particular project needs.

- 15 -

Acknowledgements
I'd like to thank Didi Schütz who shepherded this paper for the EuroPLoP 2006 pattern
conference. His thoughts and remarks have substantially helped me to get the paper in
shape. I'd also like to thank Lutz Hankewitz and Dominik Dunekamp for their reviews
and feedback.

References
[Alur+2003] D. Alur, J. Crupi, and D. Malks. Core J2EE Patterns. Second Edition.
 Prentice Hall, 2003

[Evans2004] E. Evans. Domain-Driven Design. Addison Wesley, 2004

[Fowler2003] M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley,
2003

[Marinescu2002] F. Marinescu. EJB Design Patterns. John Wiley & Sons, 2002

[Riel1996] A. Riel. Object-Oriented Design Heuristics. Addison Wesley, 1996

[Validator] Jakarta Commons Validator Project.
 http://jakarta.apache.org/commons/validator/

[Völter+2004] M. Völter, J. Bettin. Patterns for Model-Driven Development. In
 Proceedings of the 9th European Conference on Pattern Languages of Programming, 2004
 http://www.voelter.de/data/pub/MDDPatterns.pdf

- 16 -

	Introduction
	Running Example
	Enhanced Business Objects
	Client-Side Procedural Logic
	Client-Side Wrapper Objects
	Shared Declarative Logic
	Acknowledgements
	References

