
User Interface Design for Searching
A Pattern Language

Tim Wellhausen

kontakt@tim-wellhausen.de
http://www.tim-wellhausen.de

Jan 13, 2006

Abstract: The ability to perform search requests in business data is an important as­
set of any information system. To be accepted by its users, an information system
needs a front-end user interface that leverages the features and complexity of the
back-end search facilities. Intended for GUI designers and developers, this paper
proposes a pattern language for the design of such user interfaces.

- 1 -

Introduction
A modern information system typically is connected to data sources that store a huge amount of
structured data. To be of economic value, data must be easily accessible to the users of the in­
formation system. It is therefore important to provide means of searching that are both power­
ful and easy to use.

The design of a powerful back-end that actually executes search requests poses many problems
in itself (see, for example, [Wellhausen04]). This paper focuses on design alternatives for front-
end user interfaces that enable users to easily create search requests and efficiently search for
business data.

The patterns apply to both rich-client and web applications. Because of their implementation
complexity, however, some patterns (e.g. Dynamic Search Dialog) are mostly found in rich-
client applications. The pattern language focuses on searching data that is stored in databases.
Patterns for searching in documents such as “Find And Replace” and “Find Next” are outside
the scope of this paper. Key terms are explained in a glossary.

Overview
The User Interfaces for Searching pattern language consists of 14 patterns. The following dia­
gram shows these patterns and outlines the structure of the language. The starting point is
Intuitive Search Interface. The arrows in the diagram denote the order in which you may ap­
ply the patterns: the resulting context of one pattern is part of the problem of another pattern.
Two of the patterns are not described in this paper; only their thumbnails are given.

The stars behind the pattern names indicate the author's confidence in the patterns: two stars are
reserved for patterns that are known to work well, while zero stars indicates that a pattern may
have alternative solutions.

- 2 -

Thumbnails
The following thumbnails contain the problems and the solutions of all patterns.

Pattern name Problem Solution

Intuitive Search
Interface

Many search interfaces are difficult to com­
prehend because their usage requires know­
ledge about the data structures that are
searched and the search capabilities at the
data sources. How can we provide a search
interface that users can intuitively under­
stand?

Shield the users from technical details
and choose search metaphors users are
comfortable with instead of technical
and mathematical vocabulary.

Static Search
Dialog **

How can we support users to quickly create
their individual search requests?

Provide a search dialog whose appear­
ance is static, i.e. the dialog contains a
fixed number of search fields whose po­
sitions on the dialog do not change.

Deactivate Fields ** When a search field is left empty, how can the
user decide whether the system should search
for empty values or whether it should exclude
the respective search parameter from the
search request?

Support an explicit activation and deac­
tivation of search fields and include
only activated search fields in a search
request.

Result Count
Feedback *

Databases in information systems may be­
come huge. Searching in the stored data may
therefore return big result sets that slow
down the system. How can we avoid big res­
ult sets?

Provide feedback on the expected result
set size of a search request before this
search request is actually executed.

Search Over All
Fields *

An information system may keep similar
pieces of data at different places. How can the
users easily search for occurrences of a partic­
ular value in all of these locations?

Let the system execute search requests
that automatically include all business
fields where the requested data may be
stored.

Refine Results Initial search requests often return result sets
where it is difficult for users to quickly
identify the results they are looking for. How
can we support an iterative search request re­
finement?

Allow the users to perform searches
within the results retrieved from earlier
search requests. Allow them to back­
track to previous results to change
earlier decisions.

Save Searches ** Some search requirements do not change.
How can we avoid that users have to recreate
their typical search requests over and over
again?

Let the users save, load, manage, and
re-execute their search requests.

Context Searches * The same application context often requires
the same search requests to be executed. How
can we avoid that users have to create such
search requests explicitly?

Provide predefined search requests and
make them available in the appropriate
application context.

Simple and Expert
Search Dialog **

Most of the time, users need only few search
features despite the richness of the available
functionality. How can we ensure that aver­
age users can create their standard search re­
quests easily and fast whereas expert users
have access to the full search functionality?

Provide a simple search dialog that con­
tains only the most important features.
Additionally provide an expert search
dialog that supports all features avail­
able.

Search Bar ** How can we avoid a search dialog that takes a
lot of space on the screen if the search re­

Add a small search bar to the applica­
tion that provides space for entering a

- 3 -

Pattern name Problem Solution

quirements are simple? value for one search parameter. Start
searching when the users press the enter
key.

Dynamic Search
Dialog *

The domain model may contain a huge num­
ber of business fields that can be searched.
How do we avoid a search dialog that has to
provide a static search field for every search­
able business field?

Provide a search dialog that lists all
available search parameters and let the
users explicitly choose the search para­
meters to be included in a request.

Hide Data Structure The structure of the domain model may be
complex and difficult to understand. How
can we avoid that all users have to learn and
understand the domain model?

Hide the structure of the domain model
and present a flat view of it.

Make Data Structure
Explicit

The domain model is complex and expert
users need full control over formulating their
search requests. How do we appropriately
represent the domain model?

Provide a graphical view of the business
domain model that includes all entities,
their business fields and associations.
Let the users navigate through the
model and let them choose any business
field as search parameter.

Freestyle Search ** Users of some information systems need to
quickly execute complex search requests.
How can we provide an appropriate user in­
terface?

Provide a domain specific search lan­
guage that supports all features of the
back-end search facilities. Expert users
may formulate their search requests by
entering statements in the search lan­
guage.

- 4 -

Intuitive Search Interface
The user interface of an information system has to support searching.

Many search interfaces require technical knowledge about the back-end search facilities.
How can we provide a search interface that users can intuitively understand?

You cannot assume that all users understand the fundamentals of information retrieval and
know the capabilities and restrictions of the back-end search facilities. However, the user inter­
face for searching must be suitable for all user.

Therefore:

Shield the users from technical details and choose search metaphors users are comfortable
with instead of technical and mathematical vocabulary.

You should not require the users to learn a technical search language like SQL. Instead, create a
Static Search Dialog that explicitly provides GUI elements to control all features of the back-
end search engine. Ensure consistent default settings among all GUI elements. For example,
typical GUI elements let the users set the sort order and the maximum number of results like on
the Cisco Datasheet Website.

Most users do not know the fundamentals of Boolean algebra such as the precedences of ands or
ors in Boolean expressions. Instead, you may support a syntax for entering search phrases as it is
provided by many Internet search engines (“+term1 -term2”). Alternatively, you may provide
GUI elements to let the users control the interpretation of a search phrase. The resume finder
infoGIST, for example, provides such GUI elements.

If some expert users need advanced search capabilities, you may provide Simple and Expert
Search Dialog. In that case, one search dialog provides a simplified user interface, whereas the
other one exposes all features of the back-end search engine.

If the result set size of a typical search request is big, present Result Count Feedback to your
users and let them iteratively Refine Results. Provide predefined Context Searches if in a
specific application context, users always need to perform the same search requests.

- 5 -

Static Search Dialog **
We are developing an Intuitive Search Interface for an information system. We may be im­
plementing the simple part of Simple and Expert Search Dialog.

How can we support users to quickly create their individual search requests?

The visual appearance of a search dialog strongly influences the usability of a search dialog.
New users should easily find all features, whereas experienced users should be able to quickly
create search requests. The average user should be able to open the search dialog, enter some
values and execute a search request within a couple of seconds.

Therefore:

Provide a search dialog whose appearance is static, i.e. the dialog contains a fixed number of
search fields whose positions on the dialog do not change.

A static search dialog provides an individual search field for every searchable business field. Ad­
ditional GUI elements allow the users to specify search settings. The position of search fields on
the dialog should be fixed so that users may recognize and find them easily. The order of the
search fields and other GUI elements on the dialog should represent their respective importance
for typical search requests.

Static search dialogs are very common.
In Eclipse, the Java search dialog
presents a typical example of such a
dialog.

A static search dialog has limitations.
Whenever the domain model changes,
the search dialog has to be modified as
well by adding or removing search
fields.

If the users need to search for empty
values, you should consider to let them
Deactivate Fields. If they frequently
execute standard search request, you
may let them Save Searches.

- 6 -

Deactivate Fields **
We are developing a Static Search Dialog.

If a search field is left empty, how can the user decide whether the system should search for
empty values or whether it should exclude the respective search parameter from the search
request?

Depending on the semantics of the domain model, you may always exclude those search fields
from a search request into which the users enter no values. If you have to support searching for
empty business fields, however, you need to distinguish between searching for empty values and
not including a search field in a search request.

Therefore:

Support an explicit activation and deactivation of search fields and include only activated
search fields in a search request.

A check box in front of each search field is a convenient means to let the users enable and dis­
able a search field without losing its current value. A search field is included in a search request
only if the corresponding check box is selected. As downside, search dialogs look more messy
and their control code might become more complex.

The search dialog of the Pennsylvania's Historic Architecture & Archaeology web site provides a
check box in front of each search field. The search fields are enabled or disabled according to the
states of their check boxes.

You may present Result Count Feedback so that the users get immediate feedback on the con­
sequences of adding or removing a search parameter.

- 7 -

Result Count Feedback *
We are developing an Intuitive Search Interface for an information system. Users may
Deactivate Fields or Search Over All Fields.

Databases in information systems may become huge. Searching in the stored data may
therefore return big result sets that slow down the system. How can we avoid big result
sets?

For a user, it is difficult to find the relevant data in a large result set. Even worse, transferring a
large result set over the network may slow down the whole system. Users may become impa­
tient and start their search requests several times in a row, thereby degrading the response times
even more. If the users knew the number of hits for a search request, they could adjust the
search parameters in advance to reduce the result set size.

Therefore:

Provide feedback on the expected result set size of a search request before this search request
is actually executed.

You should try to reduce the users' effort to determine the result set size. Ideally, you present
result counts without explicit user interaction. A rich-client application, for example, may re­
trieve result counts in the background while the users are entering values. An individual hit
count may be displayed next to each search field. Whenever the users change a value, the result
counts are updated automatically.

ProContent, an internally used information system of a television company, has a search dialog
that shows both result counts for every search parameter and for the overall search request.

Depending on the data source, an information system may compute the result set size signific­
antly faster than it may retrieve the complete result set. A full-text search engine with a com­
plete index of all words, for example, may return the number of hits very fast, although it may
take a considerable amount of time to fetch and return the results.

Result count feedback may degrade performance, on the other hand, if the database or search
engine cannot efficiently retrieve result counts. Regardless of the efficiency of the back-end
search engine, you have to trade off the decreased number of actually retrieved result sets
against the increased number of result count queries.

- 8 -

Search Over All Fields *
We are developing a Static Search Dialog or a Search Bar.

An information system may keep similar pieces of data at different places. How can the
users easily search for occurrences of a particular value in all of these locations?

The domain model may not be consistent so that some pieces of information are redundantly
stored at different places. Even if the domain model is consistent, similar pieces of information
may be stored in different places. For instance, a content management system may store descrip­
tions of different lengths for each content item.

Therefore:

Let the system execute search requests that automatically include all business fields where
the requested data may be stored.

The users should enter a value in one search field without caring which additional business
fields are searched by the system. The decision which business fields to add to a search request
has to be taken during application development.

Bugzilla, a bug tracking system, supports a simplified search page. The following example
shows how users can retrieve bug reports in which the phrase they enter may appear either in
the description or in the comment of a report.

Such a feature may yield a high system load if it is used extensively, in particular if a database
does not contain indexes on the fields that are searched. It may cause huge result sets so that the
users do not find what they are actually searching for. Consider providing Result Count
Feedback to make the users aware of the number of results in advance.

- 9 -

Refine Results
We are developing an Intuitive Search Interface for an information system.

Initial search requests often return result sets where it is difficult for users to quickly identi­
fy the results they are looking for. How can we support an iterative search request refine­
ment?

Search requests may return many results. Advanced users would like to modify their search re­
quests iteratively to reduce the result set count, for example by adding additional search para­
meters. If users would like to try different search parameters they need to switch easily to earlier
search requests which is only possible if the history of executed search requests is accessible.

Therefore:

Allow the users to perform searches within the results retrieved from earlier search re­
quests. Allow them to backtrack to previous results to change earlier decisions.

Step by step, users may decrease the result set size by applying further search parameters until
the result set size is small enough to be closely examined. Keep information about each search
request so that the users may backtrack if they find out that they are stuck in a dead end.

Searching within previous results may be implemented in different ways: the system may keep
the identities of the resulting data records and narrow the next search request to those identities.
Or it may keep the search request and enhance it with new search parameters. In the latter case,
the system may automatically Save Searches so that users may resume refining their results at a
later date.

JProfiler, a Java profiling tool, supports analyzing a snapshot of an object heap. It keeps inform­
ation about every decision the users take and lets them backtrack to all previous steps.

- 10 -

Save Searches **
We are developing a Static Search Dialog, a Dynamic Search Dialog, or Freestyle Search.
Users may Refine Results.

Some search requirements do not change. How can we avoid that users have to recreate
their typical search requests over and over again?

For many tasks, users need typical search requests that rarely change but that cannot be anticip­
ated by application developers. Nevertheless, it is necessary to support users in avoiding the re­
petitive creation of frequently executed search requests.

Therefore:

Let the users save, load, manage, and re-execute their search requests.

The system has to be able to save the current state of a search dialog and store it persistently.
The users may later choose any of their saved search requests for execution. If a saved search re­
quest is retrieved, the search dialog has to restore the saved values and let the users modify and
execute the request.

Sometimes, a group of users have the same search requirements. In that case, grant key users the
right to share their saved search requests with all group members. Group members may not
have the permissions to modify saved search requests, only the execute them.

B3, an internally used
information system of
a media company,
provides a search dia­
log that enables the
users to manage and
share their search re­
quests.

To support such a fea­
ture, the system must
be able to store and re­
store search requests.
Consider creating an abstraction layer that separates the description of search requests from
their execution.

Search requests that are saved by users may be made available as Context Searches.

- 11 -

Context Searches *
We are developing an Intuitive Search Interface for an information system. The users may
Save Searches.

The same application context often requires the same search requests to be executed. How
can we avoid that users have to create such search requests explicitly?

A search dialog gives users full flexibility in creating search requests. Sometimes, such flexibility
is not necessary because the users need to execute standard search requests that do not change.
In a library, for example, the librarian always needs the list of all books that are borrowed by a
person when that person returns a book.

Therefore:

Provide predefined search requests and make them available in the appropriate application
context.

A rich-client application may provide a context specific pop-up menu whose menu items dir­
ectly execute search requests when chosen. A web application may list links to all predefined
search requests that are available for the current user in the current context. Clicking on a link
executes the search request and opens a new page with the results.

Search requests may be predefined by application developers if the developers know the users'
search requirements in detail. Search requests may also be predefined by the users themselves if
they can Save Searches and provide a hint to which application context a saved search request
applies.

OpenBC, a platform for establishing business contacts, provides links to search for persons who
have the same background or similar interests.

- 12 -

Simple and Expert Search Dialog **
We are developing an Intuitive Search Interface for an information system.

Most of the time, users need only few search features out of the richness of the available
functionality. How can we ensure that average users can create their standard search re­
quests easily and fast whereas expert users have access to the full search functionality?

Most of the time, most users only need a limited sub set of all features available. If a system only
provides one search dialog that contains the complete search functionality, using such a dialog is
difficult for average users. If some features are left out, on the other hand, some search requests
cannot be created any more.

Therefore:

Provide a simple search dialog that contains only the most important features. Additionally
provide an expert search dialog that supports all features available.

A simple search dialog makes it easier for novices to learn the basics of searching and lets the
more experienced users search fast and conveniently. An expert search dialog is made for ad­
vanced users who have a broad understanding of the domain model and of the search capabilit­
ies of the back-end.

You should only include those features in a simple search dialog that are useful to most users. A
feature that is needed by one group of users may not be important to another group. In case of
doubt, restrict these features to the expert search dialog. Typical features that should only be
provided in an expert search dialog include sorting and an advanced query syntax.

The Langenscheidt e-dictionary provides both a
simple and an expert search dialog. The simple
search dialog is an example of a Search Bar
that contains only one search field whereas the
expert search dialog makes the complete search
functionality available.

A simple search dialog typically is a Static
Search Dialog. An expert search dialog may
be a Dynamic Search Dialog that allows to
add search fields to a search interface dynamic­
ally. It may as well provide Freestyle Search,
i.e. the users may enter search requests using a
dedicated search language.

- 13 -

Search Bar **
We are developing a simple search dialog as part of Simple and Expert Search Dialog.

How can we avoid a search dialog that takes a lot of space on the screen if the search re­
quirements are simple?

A typical search dialog takes up permanent space on the screen so that the users have less space
available for other dialogs. If there is an expert search dialog available, the requirements for a
simple search dialog are low. It may provide only one search field.

Therefore:

Add a small search bar to the application that provides space for entering a value for one
search parameter. Start searching when the users press the enter key.

A search bar should always be visible, for example as part of the application tool bar. By press­
ing a specific key combination, the keyboard focus should move to the search field so that the
users may immediately fill in a value and start searching by pressing the enter key.

KMail, an e-mail client application, provides a search bar that simplifies searching in e-mail bod­
ies for a given phrase.

A drop down list box in front of the search field may allow users to
choose among different search parameters. The Firefox web browser,
for example, provides a search bar with which users may send search
requests to a configurable Internet search engine.

A search bar becomes more powerful if users may Search Over All Fields, i.e. if they only
have to fill in one value and several business fields are searched at once.

The Search Bar pattern mainly applies to rich-client applications. For web applications, it is
known as Search Box ([Graham02]).

- 14 -

Dynamic Search Dialog *
We are developing the expert part of Simple and Expert Search Dialog.

The domain model may contain a huge number of business fields that can be searched. How
do we avoid a search dialog that has to provide a static search field for every searchable
business field?

The domain models of some information systems change often because of new business require­
ments. If you provide a Static Search Dialog, you need to update the search dialogs fre­
quently, which may be expensive. A Static Search Dialog may also be difficult to use because
of its complexity. It is hard to arrange all search fields in a way that the users can easily recog­
nize and find them.

Therefore:

Provide a search dialog that lists all available search parameters and lets the users explicitly
choose the search parameters to be included in a request.

Most expert users have a good understanding of the domain model so that you should Make
Data Structure Explicit. In that case, a tree or graph of search parameters may represent the
structure of the domain model. Otherwise, you may Hide Data Structure and provide a flat
list of all search parameters to choose from.

The chosen search parameters have to be combined before their execution as a search request.
Typically, all search parameters are combined by a Boolean and operator. You may as well al­
low the users to explicitly define the combining operator. You may additionally support hier­
archically combined search parameters (see the example below).

ClearQuest, a bug tracking ap­
plication, contains a dynamic
search dialog. On the left hand
side, all available search para­
meters are shown. On the right
hand side, a user may create a
hierarchically structured search
request by dragging and drop­
ping search parameters.

To support a dynamic search
dialog, you need a back-end
search engine that supports dy­
namic search requests. A
Query Engine (see [Well­
hausen04]) is a pattern that describes a solution for executing dynamic search requests.

A dynamic search dialog is a powerful means to search for business data. It may likewise be em­
ployed to create business reports. However, it is expensive to built and it usage is quite difficult
to understand since it is designed mainly for expert users.

If the users frequently execute standard search requests, you may let them Save Searches.

- 15 -

Freestyle Search **
We are developing the expert part of Simple and Expert Search Dialog.

Users of some information systems need to quickly execute complex search requests. How
can we provide an appropriate user interface?

Some expert users don't need a graphical user interface to formulate their search requests. They
know exactly what they are searching for, they know the domain model, and they know the
fundamentals of information retrieval.

For any given system, there will always be another requirement that does not fit the current im­
plementation. Extending an existing search dialog is expensive and may disturb the users that are
familiar with the current version.

Therefore:

Provide a domain specific search language that supports all features of the back-end search
facilities. Expert users may formulate their search requests by entering statements in the
search language.

The search language may be the native query language of the data source. If a relational database
is used, experts may formulate their search requests in SQL. If the users should be shielded from
the data sources, however, you need an abstraction from the native search language.

In that case, you need to invent a domain specific search language that is transformed at runtime
into the native query language. You may implement arbitrarily complex search features by
providing appropriate search expressions. You are not limited by a user interface toolkit. If new
search features have to be included, you just need to extend the search language and the trans­
formations.

If you provide Freestyle Search, you may save development costs because you don't need to
provide a graphical user interface. On the other hand, the users have to be trained extensively.

Many European travel agencies are connected to the online booking system Amadeus that sup­
ports freestyle searching. Its search language is powerful but cryptic. Travel agents have to regu­
larly update their knowledge as the search language continues to evolve. The following example
is a search request to list all available economy cars in Frankfurt on April 04 to be rented for one
day starting at 10am:

CA ZI FRA 04APR-1 / ARR-1000-0800 / VT-ECMN / ID-Y2XXXX

If the users frequently execute standard search requests, you may let them Save Searches.

- 16 -

Acknowledgments
I would like to thank my shepherd Frank Buschmann for his encouragement during the review
process of this paper. His many valuable comments helped a lot to improve the patterns. I'd also
like to thank the participants of the EuroPLoP 2005 writers' workshop for their insightful feed­
back and suggestions, in particular Allan Kelly and Hans Wegener.

Glossary
This glossary explains terms that are used throughout the paper.

Domain model A model of the data that is available within an information system.

Business field An element of a domain model that can be searched.

Search field A graphical component of a search dialog, for example a text field, into
which users enter values to search for. Typically, every search field is
connected to a business field.

Search request An abstract description of what exactly is searched. A search request
contains a search target and search parameters. The back-end search engine
executes a search request on the appropriate data source(s) and returns a
result set.

Result set The result of executing a search request: a set of all data records in the data
source that conform to the search parameters.

References
[Graham02] Graham, I.: A Pattern Language for Web Usability, Addison-Wesley,

 2002, http://www.wupatterns.com/

[Laakso03] Laakso, Sari A.: User Interface Design Patterns,
 http://www.cs.helsinki.fi/u/salaakso/patterns/

[Tidwell99] Tidwell, J.: Common ground: Pattern Language for Human-Computer
 Interface Design,
 http://www.mit.edu/~jtidwell/interaction_patterns.html

[Tidwell04] Tidwell, J.: UI Patterns and Techniques,
 http://time-tripper.com/uipatterns/

[Tidwell05] Tidwell, J.: Designing Interfaces, O'Reilly, 2005

[Welie03] Welie, M.: GUI Design patterns,
 http://www.welie.com/patterns/gui/index.html

[Wellhausen04] Wellhausen, T.: Query Engine – A Pattern for Performing Dynamic
 Searches in Information Systems, in: Proceedings of the European
 Conference on Pattern Languages of Programming (EuroPLoP) 2004,
 http://www.tim-wellhausen.de/papers/QueryEngine.pdf

- 17 -

	Introduction
	Intuitive Search Interface
	Static Search Dialog **
	Deactivate Fields **
	Result Count Feedback *
	Search Over All Fields *
	Refine Results
	Save Searches **
	Context Searches *
	Simple and Expert Search Dialog **
	Search Bar **
	Dynamic Search Dialog *
	Freestyle Search **
	Acknowledgments
	Glossary
	References

